Heat Of Combustion Of Methanol
Methyl Alcohol
- Formula: CH4O
- Molecular weight: 32.0419
-
IUPAC Standard InChI: InChI=1S/CH4O/c1-2/h2H,1H3
- IUPAC Standard InChIKey: OKKJLVBELUTLKV-UHFFFAOYSA-N
- CAS Registry Number: 67-56-one
- Chemical structure:
This structure is also bachelor as a 2d Mol file or every bit a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Methan-d3-ol
- Methanol-o-d1
- Methanol-D4
- Other names: Methanol; Carbinol; Methyl hydroxide; Methylol; Monohydroxymethane; Wood alcohol; CH3OH; Colonial spirit; Columbian spirit; Hydroxymethane; Forest naphtha; Alcool methylique; Alcool metilico; Columbian spirits; Metanolo; Methylalkohol; Metylowy alkohol; Pyroxylic spirit; Woods spirit; Rcra waste number U154; Un 1230; Pyro alcohol; Spirit of forest; Bieleski's solution; NSC 85232
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Condensed phase thermochemistry information
- References
- Notes
- Other information available:
- Gas phase thermochemistry data
- Phase change data
- Reaction thermochemistry data: reactions one to 50, reactions 51 to 100, reactions 101 to 150, reactions 151 to 200, reactions 201 to 250, reactions 251 to 300
- Henry'southward Law data
- Gas phase ion energetics data
- Ion clustering data
- IR Spectrum
- Mass spectrum (electron ionization)
- Vibrational and/or electronic energy levels
- Gas Chromatography
- Fluid Properties
- Data at other public NIST sites:
- Computational Chemistry Comparing and Benchmark Database
- Gas Phase Kinetics Database
- Options:
- Switch to calorie-based units
Information at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical information)
NIST subscription sites provide data under the NIST Standard Reference Information Program, merely require an almanac fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already exist a subscriber. Follow the links higher up to notice out more about the data in these sites and their terms of usage.
Condensed stage thermochemistry data
Get To: Height, References, Notes
Data compilation copyright by the U.South. Secretarial assistant of Commerce on behalf of the U.Southward.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
| Quantity | Value | Units | Method | Reference | Comment |
|---|---|---|---|---|---|
| ΔfH°liquid | -238.4 | kJ/mol | Ccr | Baroody and Carpenter, 1972 | ALS |
| ΔfH°liquid | -239.5 ± 0.2 | kJ/mol | Ccb | Chao and Rossini, 1965 | come across Rossini, 1934; ALS |
| ΔfH°liquid | -238.nine ± three.vi | kJ/mol | Ccb | Light-green, 1960 | Reanalyzed by Cox and Pilcher, 1970, Original value = -238.5 ± 0.ii kJ/mol; ALS |
| ΔfH°liquid | -250.6 | kJ/mol | Ccb | Parks, 1925 | ALS |
| ΔfH°liquid | -251.3 ± 5.0 | kJ/mol | Ccb | Richards and Davis, 1920 | DRB |
| Quantity | Value | Units | Method | Reference | Comment |
| ΔcH°liquid | -725.seven ± 0.1 | kJ/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; Corresponding ΔfHºliquid = -239.5 kJ/mol (elementary calculation by NIST; no Washburn corrections); ALS |
| ΔcH°liquid | -726.5 ± 0.two | kJ/mol | Ccb | Greenish, 1960 | Corresponding ΔfHºliquid = -238.vii kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
| ΔcH°liquid | -726.34 ± 0.20 | kJ/mol | Ccb | Rossini, 1931 | Corresponding ΔfHºliquid = -238.83 kJ/mol (unproblematic adding by NIST; no Washburn corrections); ALS |
| ΔcH°liquid | -715.05 | kJ/mol | Ccb | Parks, 1925 | Corresponding ΔfHºliquid = -250.i kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
| ΔcH°liquid | -713.83 | kJ/mol | Ccb | Richards and Davis, 1920 | At 291 K; Corresponding ΔfHºliquid = -251.34 kJ/mol (simple adding by NIST; no Washburn corrections); ALS |
| Quantity | Value | Units | Method | Reference | Comment |
| Due south°liquid | 127.19 | J/mol*Chiliad | N/A | Carlson and Westrum, 1971 | DH |
| Southward°liquid | 126.8 | J/mol*G | N/A | Kelley, 1929 | DH |
| Southward°liquid | 129.7 | J/mol*K | N/A | Parks, Kelley, et al., 1929 | Extrapolation beneath ninety K, 34.three J/mol*1000. Revision of previous data.; DH |
| S°liquid | 136.4 | J/mol*K | Northward/A | Parks, 1925 | Extrapolation beneath xc K, 40.75 J/mol*One thousand.; DH |
| Quantity | Value | Units | Method | Reference | Comment |
| S°solid,1 bar | 1.117 | J/mol*K | N/A | Ahlberg, Blanchard, et al., 1937 | DH |
Abiding pressure heat capacity of liquid
| Cp,liquid (J/mol*Thousand) | Temperature (K) | Reference | Comment |
|---|---|---|---|
| 79.5 | 298.15 | Filatov and Afanas'ev, 1992 | DH |
| 81.11 | 298.15 | Khasanshin and Zykova, 1989 | T = 175 to 338 Grand. Unsmoothed experimental datum.; DH |
| 80.24 | 298.xv | Andreoli-Ball, Patterson, et al., 1988 | DH |
| eighty.35 | 298.15 | Okano, Ogawa, et al., 1988 | DH |
| 81.0 | 298.15 | Lankford and Criss, 1987 | DH |
| 81.32 | 298. | Korolev, Kukharenko, et al., 1986 | DH |
| lxxx.28 | 298.15 | Ogawa and Murakami, 1986 | DH |
| 81.56 | 298.15 | Tanaka, Toyama, et al., 1986 | DH |
| eighty.22 | 298.fifteen | Costas and Patterson, 1985 | T = 298.fifteen, 313.xv Thou.; DH |
| 81.47 | 298.fifteen | Zegers and Somsen, 1984 | DH |
| 78.90 | 288.15 | Benson and D'Arcy, 1982 | DH |
| 81.92 | 298.15 | Villamanan, Casanova, et al., 1982 | DH |
| 80.8 | 293.15 | Atalla, El-Sharkawy, et al., 1981 | DH |
| 81.13 | 298.15 | Carlson and Westrum, 1971 | T = 5 to 332 Chiliad.; DH |
| 83.7 | 298. | Deshpande and Bhatagadde, 1971 | T = 298 to 318 K.; DH |
| 85.8 | 313.2 | Paz Andrade, Paz, et al., 1970 | DH |
| 85.viii | 298.2 | Katayama, 1962 | T = 10 to 60°C.; DH |
| 80.8 | 311. | Swietoslawski and Zielenkiewicz, 1960 | Mean value 21 to 56°C.; DH |
| 86.2 | 323. | Hough, Bricklayer, et al., 1950 | T = 323 to 353 K.; DH |
| 75.77 | 270. | Staveley and Gupta, 1949 | T = ninety to 270 K.; DH |
| 86.6 | 300.8 | Phillip, 1939 | DH |
| 83.56 | 313.15 | Fiock, Ginnings, et al., 1931 | T = twoscore to 110°C.; DH |
| 79.nine | 292.0 | Kelley, 1929 | T = 16 to 293 Chiliad. Value is unsmoothed experimental datum.; DH |
| 78.two | 270. | Mitsukuri and Hara, 1929 | T = 190 to 270 K.; DH |
| 79.9 | 290.1 | Parks, 1925 | T = 89 to 290 One thousand. Value is unsmoothed experimental datum.; DH |
| 83.iii | 298. | von Reis, 1881 | T = 288 to 335 K.; DH |
Constant force per unit area heat capacity of solid
| Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
|---|---|---|---|
| 68.39 | 120. | Sugisaki, Suga, et al., 1968 | glass phase; T = twenty to 120 K.; DH |
| five.40 | 20.5 | Ahlberg, Blanchard, et al., 1937 | T = 5 to 28 K.; DH |
| 105. | 173. | Maass and Walbauer, 1925 | T = 93 to 173 Yard.; DH |
References
Get To: Height, Condensed phase thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Baroody and Carpenter, 1972
Baroody, E.E.; Carpenter, G.A., Heats of formation of propellant compounds (U), Rpt. Naval Ordnance Systems Control Task No. 331-003/067-one/UR2402-001 for Naval Ordance Station, Indian Head, MD, 1972, 1-9. [all data]
Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, x, 374-379. [all data]
Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]
Light-green, 1960
Dark-green, J.H.S., Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216. [all information]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, Chiliad., Thermochemistry of Organic and Organometallic Compounds, Bookish Printing, New York, 1970, i-636. [all data]
Parks, 1925
Parks, Chiliad.S., Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols, J. Am. Chem. Soc., 1925, 47, 338-345. [all information]
Richards and Davis, 1920
Richards, T.W.; Davis, H.South., The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds, J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]
Rossini, 1931
Rossini, F.D., The heat of combustion of methyl alcohol, Proc. Nat'l Acad. Sci., 1931, 17, 343-347. [all data]
Carlson and Westrum, 1971
Carlson, H.Yard.; Westrum, E.F., Jr., Methanol: heat capacity, enthalpies of transition and melting, and thermodynamic backdrop from 5-300K, J. Chem. Phys., 1971, 54, 1464-1471. [all information]
Kelley, 1929
Kelley, One thousand.K., The rut chapters of methyl alcohol from 16K to 298K and the corresponding entropy and free free energy, J. Am. Chem. Soc., 1929, 51, 180-187. [all data]
Parks, Kelley, et al., 1929
Parks, G.Southward.; Kelley, G.K.; Huffman, H.M., Thermal data on organic compounds. 5. A revision of the entropies and costless energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Ahlberg, Blanchard, et al., 1937
Ahlberg, J.E.; Blanchard, E.R.; Lundberg, W.O., The rut capacities of benzene, methyl alcohol and glycerol at very low temperatures, J. Chem. Phys., 1937, 5, 537-551. [all data]
Filatov and Afanas'ev, 1992
Filatov, V.A.; Afanas'ev, V.Due north., Differential heat-flux calorimeter, Izv. Vysshikh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1992, 35(8), 97-100. [all data]
Khasanshin and Zykova, 1989
Khasanshin, T.S.; Zykova, T.B., Specific heat of saturated monatomic alcohols, Inzh. -Fiz. Zhur., 1989, 56(6), 991-994. [all data]
Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, Thou., Oestrus capacity and respective states in alkan-1-ol-northward-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all information]
Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, South., Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K, Tin can. J. Chem., 1988, 66, 713-717. [all information]
Lankford and Criss, 1987
Lankford, J.I.; Criss, C.1000., Partial molar rut caqpacities of selected electrolytes and benzene in methanol and dimethyldulfoxide at 25, 40 and 80°C, J. Solution Chem., 1987, sixteen(11), 885-906. [all information]
Korolev, Kukharenko, et al., 1986
Korolev, V.P.; Kukharenko, V.A.; Krestov, G.A., Specific estrus of binary mixtures of aliphatic alcohols with N,Northward-dimethylformamide and dimethylsulphoxide, Zhur. Fiz. Khim., 1986, 60, 1854-1857. [all information]
Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S., Excess isobaric rut capacities for water + alkanol mixtures at 298.15 K, Thermochim. Acta, 1986, 109, 145-154. [all data]
Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(one-x)C7H16} for n = one to 6 at 298.fifteen K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]
Costas and Patterson, 1985
Costas, M.; Patterson, D., Cocky-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. one, 1985, 81, 635-654. [all information]
Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and estrus capacities in (dimethylformamide + an north-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]
Benson and D'Arcy, 1982
Benson, G.C.; D'Arcy, P.J., Excess isobaric heat capacities of water - northward-alcohol mixtures, J. Chem. Eng. Information, 1982, 27, 439-442. [all information]
Villamanan, Casanova, et al., 1982
Villamanan, M.A.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.East., Thermochemical behavior of mixtures of northward-alcohol + aliphatic ether: rut capacities and volumes at 298.15 M, Thermochim. Acta, 1982, 52, 279-283. [all data]
Atalla, El-Sharkawy, et al., 1981
Atalla, Due south.R.; El-Sharkawy, A.A.; Gasser, F.A., Measurement of thermal properties of liquids with an Ac heated-wire technique, Inter. J. Thermophys., 1981, ii(ii), 155-162. [all information]
Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, Fifty.G., Heat capacities at constant volume, free volumes, and rotational freedom in some liquids, Aust. J. Chem., 1971, 24, 1817-1822. [all information]
Paz Andrade, Paz, et al., 1970
Paz Andrade, Chiliad.I.; Paz, J.K.; Recacho, Due east., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]
Katayama, 1962
Katayama, T., Heats of mixing, liquid heat capacities and enthalpy, concentration charts for methanol-water and isopropanol-water systems, Kagaku Kogaku, 1962, 26, 361-372. [all data]
Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, Westward.; Zielenkiewicz, A., Hateful specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all information]
Hough, Bricklayer, et al., 1950
Hough, Eastward.W.; Stonemason, D.One thousand.; Sage, B.H., Heat capacities of several organic liquids, J. Am. Chem. Soc., 1950, 72, 5775-5777. [all data]
Staveley and Gupta, 1949
Staveley, L.A.G.; Gupta, A.M., A semi-micro low-temperature calorimeter, and a comparison of some thermodynamic properties of methyl alcohol and methyl deuteroxide, Trans. Faraday Soc., 1949, 45, 50-61. [all data]
Phillip, 1939
Phillip, Due north.Yard., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]
Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B., Calorimetric determinations of thermal backdrop of methyl booze, ethyl alcohol, and benzene, J. Res., 1931, NBS 6, 881-900. [all data]
Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K., Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at depression temperatures, Balderdash. Chem. Soc. Japan, 1929, 4, 77-81. [all data]
von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]
Sugisaki, Suga, et al., 1968
Sugisaki, G.; Suga, H.; Seki, S., Calorimetric written report of the glassy state. III. Novel type calorimeter for written report of glassy land and heat capacity of burnished methanol, Bull. Chem. Soc. Japan, 1968, 41, 2586-2591. [all data]
Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J., The specific heats and latent heats of fusion of ice and of several organic compounds, J. Am. Chem. Soc., 1925, 47, i-9. [all information]
Notes
Go To: Summit, Condensed stage thermochemistry data, References
- Symbols used in this document:
Cp,liquid Constant pressure oestrus chapters of liquid Cp,solid Constant pressure heat capacity of solid S°liquid Entropy of liquid at standard conditions Due south°solid,1 bar Entropy of solid at standard conditions (one bar) ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemical science WebBook
- The National Institute of Standards and Engineering science (NIST) uses its best efforts to deliver a loftier quality copy of the Database and to verify that the data independent therein have been selected on the basis of sound scientific judgment. Yet, NIST makes no warranties to that consequence, and NIST shall non be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.
Heat Of Combustion Of Methanol,
Source: https://webbook.nist.gov/cgi/cbook.cgi?ID=C67561&Mask=2
Posted by: owenssyclee.blogspot.com

0 Response to "Heat Of Combustion Of Methanol"
Post a Comment